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Abstract. The motion of Auxons in a long Josephson junction with point-like inhomogeneities 
(microresistom) and a dissipative loss is studied in P Sed-analyticd and fully numerical mner .  
It is found that the dynamic behaviour. of Ruxons,is markedly changed by the combined effect 
of microresiston and an AC drive, i.e. the AC drive allows, via the microresiston, the fiuxons 
to overcome a dissipative resistance and to move forward linearly. A physical interpretation 
of the significant novel phenomenon is given. First, the microresistors generate a new type of 
inherent localized stmctue, the so-called impurity mode. Then, the impurity modes are excited 
and amplified by the AC drive. Finally, the fiuxon gains. through the strong Ruxon-impurity 
mode (microresistor) interactions, kinetic energy to overcome the attractive potentials of the 
microresistors and the dissipative resistance. and it escapes from the microresistors eventually. 

1. Introduction 

The dynamics of long Josephson junctions (LJJS) have been a very active and fruitful 
area of research for many years. In particular, since the recent discovery of high-T, 
superconductivity [I] there has been renewed interest. In addition, the UJs are very 
interesting objects for observing various dynamical non-linear effects including soliton 
propagation and chaotic behaviour [Z]. Recently, the successful production of LlJs with 
microresistors [3] has aroused increasing interest in order to study the propagation of 
tluxons in the microresistors. In particular, recent developments in non-linear phenomena 
in inhomogeneous systems [4,S] have provided valuable new insight into the dynamics of 
UJs with microresistors; 

The dynamics of a WJ are governed by the perturbed sineGordon (SG) equation 161 

otr - oZx +sin = -a@, + 2 E i S ( x  - li) sin o + VDc + VAC. (1) 
i=t 

Here 4 is the quantum-mechanical phase difference between the two films. The spatial 
variable x is measured in units of penetration depth Aj and~time t in units of the reciprocal 
plasma frequency m i ’ .  ab, represents the dissipation due to tunnelling of normal electrons 
across the banier, ~i is the ’strength’ of the ith microresistor (q > 0). qoc and ~ A C ,  are 
the distributed DC and AC bias currents, respectively, providing energy input. The AC bias 
current is given by 

VAC = -A  sin(wt). 
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A fluxon is described by a kink solution of the unperturbed SG equation as follows: 

where V ( V 2  < l), X ( t )  = V f  and U = rtl are the kink's velocity, centre-of-mass 
coordinate and polarity, respectively. 

For many years, the dynamics of LJJs with localized separate microresistors have been 
studied following the collectivecoordinate method of MacLaughlin and Scott [6]  and much 
significant information has been obtained 16-81. In the theory of MacLaughlin and Scott, 
a microresistor (impurity) produces a potential hill of a height U,. The external drives qAC 
and q ~ c  result from alternate and constant forces, respectively, exerted on the fluxon. In 
the absence of the DC bias current and the dissipative resistance, a critical velocity of the 
fluxon occurs. The fluxon with a velocity less than the critical velocity may be trapped 
by microresistors. In the presence of the DC bias current and the dissipative resistance, the 
equilibrium velocity V, of the fluxon is, when v ic  =- o*Uo, determined by the balance 
between the DC-driven force and the friction [6-81: 

The fluxon, if qkc < o2U0, slows gradually and is finally trapped by microresistors. In the 
opinion of MacLaughlin and Scott, an A c  drive results from the alternate force of time f and 
acts directly on the fluxon. So in an A c  drive the trapped fluxon oscillates in the vicinity 
of the microresistor. The oscillating amplitude is of the same order of the magnitude as 
the amplitude of the AC drive. Therefore, when the AC drive is weak, one naturally expects 
the effect introduced by the AC drive to be negligible. So, most previous workers [6-81 
used the model of a damped Dc-driven UI with localized microresistors for studying the WJ 
dynamics. 

However, more recent research on the dynamics in a non-linear inhomogeneous system 
has revealed some novel features [4,5,9, IO]. Firstly, the microresistors in harmonic lattices 
generate a new type of inherent localized structure, the so-called impurity mode [lo], i.e. 
local oscillations around the impurities with some inherent frequencies [4,5, IO]. Then, 
the localized impurity modes can be excited and amplified by an AC drive. Finally, the 
motion of the fluxon, through interactions between the fluxon and excited and amplified 
localized impurity modes, might be essentially changed [4,5]. In the present paper we shall 
show that, because a microresistor ( E  =- 0) supports an inherent localized structure, the AC 
drive does not necessarily act directly on a fluxon but excites impurity modes. Therefore, 
the microresistors in the AC drive, through fluxon-microresistor interaction, can essentially 
change the motion of the fluxon, i.e. in the absence of a DC drive the fluxon may overcome 
a strong dissipative resistance and move forward linearly. 

This paper is organized as follows. In section 2 we firstly, according to perturbation 
theory [4,5], describe theoretically the fluxon-microresistor interactions in the limit of 
weak AC drive and weak dissipative resistance and in the presence of two microresistors; 
we then numerically study the interactions. In section 3 we numerically analyse the fluxon- 
microresistor interactions in an AC drive, a strong dissipative resistance and many separate 
microresistors. Concluding remarks are contained in section 4. 



Josephson junction dynamics 355 

2. Perturbation theory 

In this paper, we consider equation (1) with ~ D C  = 0 in great detail. Therefore, the basic 
equation in the present paper is 

n 

- 4 , + s i n 4 = - - c u 4 , + C ~ i ~ ( x - - i ) s i n ( ~ + ~ A C .  ( 1 4  
i=l  

In  the case of weak AC drive and weak dissipative resistance, we only discuss the special 
case of two separate microresistors and EI = EZ = E, because it can display the main 
qualitative features of our problem. It should be noted that, even if the perturbation is 
non-zero but is small, equation (1) still has a kink-type solution. TQ describes fluxon- 
microresistor interactions in a weak dissipative resistance and a weak AC drive; firstly we 
treat the fluxon as a quasi-particle moving in an inhomogeneous system and assume the 
fluxon position to be the particle coordinates [4,5]; then we note that the microresistor 
(E > 0) supports a localized oscillating state, i.e. the impurity mode [4,5,10]. In the case 
of o( = 0 and A = 0, linearizing equation ( la)  with respect to small 4 yields the following 
solution for the impurity mode [lo]: 

4jm(x, t) = a~(t)exp(--~lx -11 1/2) +az(t)exp(-elx - h1/2) (4) 

where 

a1 (t) = a10 cos(Qt + 810) ( 5 4  
a*@) = au,cos(Qt + 820) (5b) 
Q=J1TE?;i;i (6) 

is the inherent frequency of the impurity mode, and 810 and 820 are constant phases. 
Hereafter, we take E = 0.7, I I  = 0 and 12 = I = 4 in our calculation. 

Now, let us return to equation (la) and analyse the fluxon-microresistor interactions by 
means of the so-called collective-coordinate approach [4,5] taking three dynamical variables 
into account and the associated numerical calculation (in brief, the semi-analytical approach 
[4]). The three dynamical variables are the fluxon position X@), and the amplitudes a,@) 
and ~ ( t )  of the impurity-mode oscillations. Assuming that A < 1 and substituting the 
nnsarz 4 = ~ 4 k  + Qim into the Lagrangian appropriate to equation (la) [4,51, i.e. 

L = lr dx (3 - - [l - & S ( X )  - & 8 ( X  - 4](1 - cos 4) 
. 2  2 

where 

Lf = f 1' @ ( x ,  t') dt' 

in the lowest-order approximation and weak relativistic case (V2 << l ) ,  we can derive the 
following approximate Lagrangian: 

L = 4X + E - '  (4: - ~ ' a : )  + ~ - I ( c i i  - ~$4) + (I  + 2e-I) exp(-+sl)ilci2 - ~ & 2 ( 2 & - ]  - 1) 
x e x p ( - - I ~ I ) a l a ~ - L I ( X ) - n l F ( X ) - U ( X - ~ ) - a 2 F ( X - I )  I 

- 4A&-'al sin(of) - 4A&-'a2 sin(of) + 2zAXsin(ot) + (9) 



2s 
U ( X )  = -- 

cosh' X 

2e sinh X 
F ( X )  = - 

cosh'X ' 

The corresponding equations of motion for the three dynamical variables are 

8 X  + 8ciX + LI'(X) + U'(X - 1 )  + a](t)F'(X) +a'(t)F'(X - 1 )  - 27rAsin(wt) = 0 

(1 IQ) 

a1 (f)+$~-I(1+2&-') exp(-$I) uz(i)+airl (t)+ +(I f2c- l )  e x p ( - & ~ ) u ' ( t ) + ~ ~ a I  ( t )  

(116) 

i i 2 ( t )  + +-'(I + 2 ~ - ' )  exp(-+) i i l  (t) + lyuz ( t )  + +(I f2c-l) exp(-$) il ( t )  + ~ P a 2 ( t )  

+&?(2&- ' - I )exp( -~e[)a1( t )+~&F(X-1)+2Asin(wt)=O.  ( l l c )  

The system (11) describes a quasi-particle with the coordinate X ( t )  and mass 8, located 
in the attractive potentials of U ( x )  and U ( x  - I), and the AC drive with the amplitude 
27rA and coupled with the harmonic oscillators al ( t )  and a2(t) which are coupled to each 
other and excited by the AC drive. From equation (1 1) we see that  the^ fluxon, owing to 
the attraction of the microresistors, very slowly approaches the first microresistor and in 
this process the effect of the AC drive on the fluxon can make the latter oscillate with an 
amplitude of the Same order of magnitude as the amplitude of the AC drive. So, when A is 
very small, the effect is negligible. However, we observe that the inherent impurity modes, 
in the presence of the AC drive, can be excited and amplified after a finite time, as shown 
in figure 1. Then, when the fluxon is close to the excited and amplified impurity modes 
(microresistors), strong interaction takes place, and hence the motion of fluxon is essentially 
changed. 

Before solving equation (1 1) numerically, we explain the physical mechanism of fluxon- 
microresistor interaction by means of an energy exchange between the kink translational 
mode (fluxon) and the impurity mode (microresistor) [5]. The energy Ei, stored in an 
impurity mode 

(12) 

+ +2(2&-' - I )  exp(-$)az(t) + ; & F ( X )  + 2Asin(ot) = 0 

qj, = a0 s in(a t  + &,)exp(-&[xl) 

may be easily calculated as 

To calculate the energy an excited impurity mode transfers to a fluxon after a fluxon- 
microresistor interaction; let us consider a fluxon with an initial velocity V, 7 0, coming 
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-1.51 

0 125 250 
t 

Figure 1. Solution of KqUXiOn (11): m(t) versus time I for pxameten A = 0.065, c1 = 0.013 
and E = 0.7. The impurity modes at excited and 3mpiifiKd lo give I Q U ) .  

from -CO. Then in the zeroth-order approximation the equation of motion, equation (11~). 
for the fluxon coordinate X ( t )  is reduced to the form S X  + U ' ( X )  = 0, which has an exact 
solution 

X ( t )  = sinh-'[Bsin(Vr)] (14) 

where B = W / V .  Now we insert the result-(l4) into F ( x )  of the equation of 
motion, equation (Ilb).  and take the function 

E E'B sinhfVt) 
2 1 + A* sinh'(Vt) 

f ( t )  = - - F [ X ( t ) ]  = 

as a pulse force acting on the harmonic oscillator. Introducing the complex variable 
e(t) = ul  + iQu,(t) and assuming that the effect of the Huxon-microresistor interaction 
is much stronger than the dissipative resistance, we find that equation (1 Ib) may be reduced 
to ( - in( =~f(t), which has the solution 

L 

((t) = exp(iQt) f ( r )  exp(-iRr) d r  + Qqexp(i(i2t + 0,)) (16) L 
with the initial conditions 

UI ( t )  = 4 sin(Qr + 6'0) (174 

ul  = a. C O ~  + eo) (17b) 
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which indicate that the oscillator (impurity mode) is excited prior to the fluxon-microresistor 
interaction. The total energy stored in the impurity mode after the fluxon-microresistor 
interaction easily calculated to be 

1 
= -[G2(Vi) E + Q 2 a ~ + 2 G ( ~ ) a o C 2 ~ ~ ~ 0 o ]  (18) 

where V, is the fluxon initial velocity, a0 is the initial amplitude of the impurity mode, 0, 
is the phase of the impurity oscillation at the collision-instant, 

with 

When the effect of the dissipative resistance on the inherent frequency is taken into account, 
the corrected inherent frequency is given by 

a= Jm. (64 
The energy that an excited impurity mode transfers to the fluxon after the interaction of the 
fluxon with the excited impurity mode is given by 

(20) 
- 1 

AE = Eim - Eim(V,, U O , ~ O )  = -;G(V~)I~UOQCOSBO + (?(Vi)]. 

The critical amplitude a, of the impurity mode above which the fluxon may escape is 
determined as 

Figure 2 gives a plot of a, against Vi for 90 = 0. Figure 3 shows that, if 80 = 0 and a0 = 1, 
A E  > 0 for any initial velocity V,. Therefore, the fluxon may, after the fluxon-excited 
impurity mode interaction, gain oscillating energy from the excited impurity mode and then 
the motion of the fluxon is essentially changed, depending dramatically on the phase 0, of 
the impurity oscillation at the collision instant. We have, in the zeroth-order approximation, 
obtained the explicit results of the fluxon-excited impurity oscillation interaction which are 
of benefit to understanding the physical connotation of this interaction. 

In the following, we analyse the problem through numerically solving equation (11) 
with the initial conditions 

X(0)  -6 ( 2 2 4  

X(0) = 0 

al (0 )  = 0 

U ]  (0) = 0 
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FigureZ. Dependence of thecritical amplitudea, on V, 
for E = 0.7 and different dissipative resistances: c w e  
(a), for a) = 0.013; curve (b). for ci = 0.2. 

Figure 3. Dependence of energy exchange - A E I G  
on V, for pxmeten E = 0.7. (IO = I and different 
dissipative resistances: C U N ~  (a), for a) = 0.013: curve 
(b). for a) = 0.2. 

-20 I 
0 125 
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io 

Figure 4. Numerical results of equation (11) 3s shown by the fluxon coordinate X ( r )  venu 
time t for different A :  curve (a). A = 0.09, the fluxon is reflected: curve (b), A = 0.065. the 
fluxon penetrates the mcroresistors. 

The numerical results, as was expected, also indicate that the Auxon gains a part of the 
oscillating energy of the microresistors (the impurity modes) and finally escapes from the 
microresistors, as shown in figure 4. 

We have, in terms of the semi-analytical approach mentioned above, drawn two 
important physical conclusions. 

(1) A characteristic impurity mode can be excited and amplified by an AC drive. 
(2) The Auxon can gain energy from the excited and amplified impurity modes 

(microresistors), then overcomes the potential wells of microresistors and the dissipative 

.o 
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resistance and finally escapes from the microresistors [4]. 
However, from equation (Ila) we can see that the motion of the fluxon depends 

dramatically on the phase 80 of the impurity oscillation at the collision instant. If the 
fluxon can overcome the attractive potentials of microresistors and dissipative resistance, 
the total force exerted by the microresistors on the fluxon must be in the same direction (the 
x direction) when the fluxon is situated between the microresistors. The exertion strictly 
constrains the AC drive and the arrangement of the microresistors. 

From now on, we turn our attention to solving equation ( l a )  numerically. We use 
a conservative numerical scheme to integrate equation (la).  Numerical calculations are 
performed in the spatial interval (-70,70) with discrete step size Ax = 2 At = 0.04. For 
the Dirac 6 function, we take its value to be equal to l /Ax  at x = 0, and zero elsewhere. 
When A << I ,  fixed boundary conditio,ns can be used:, @(-70, t )  = 0 and Q(70, I) = 2ir. 
The initial conditions are always taken as a Ruxon centred at X = -6 with initial velocity 
VO = 0. Then we have 

Q ( x ,  0) = 4tan-'[exp(x + 6)] 
Qt(x, 0) = 0. 

In order to perform numerical calculations, we have defined the centre X ( t )  of the fluxon 
at which the field function Q&, t )  is equal to s. The amplitude ai@) (i = 1, 2) of the ith 
impurity mode is then given by 

Q,(li - 0, I) - Q, (li + 0, t )  a&) =~ 
E 

The velocity of the fluxon is averaged over a period of 11 time units. The difference 
between the numerical results and the corresponding semi-analytical approach is introduced 
by making the small-parameter approximation and ignoring the radiation loss for the 
derivation of equation ( I  1). 

It can be seen that the fluxon overcomes the potential of the microresistors and escapes 
finally, as shown in figure 5. These a e  qualitatively consistent with the semi-analytical 
results for A = 0.09 and 0.0065, respectively (see figure 4). In addition, our calculation 
exhibits that there exists a critical value A, = 0.043 (in the case of a = 0.013) for the 
amplitude A of the AC drive. When the amplitude A of the AC drive is greater than A,, the 
impurity modes are excited and amplified sufficiently that the fluxon can, through fluxon- 
microresistor interaction, be inelastically scattered by the microresistors and escape from 
the microresistors; on the contrary, the impurity modes cannot be amplified sufficiently and 
hence the fluxon is trapped and oscillates in the vicinity of the microresistors, as illustrated 
in figure 5. Figure 6 demonstrates that the impurity modes are excited and amplified after 
a finite time. It is also observed that the numerical results are in good agreement with the 
semi-analytical results. 

In a real physical system the dissipative resistance of Josephson junctions is strong. 
In the next section we report our numerical simulation results in the strong dissipative 
resistance. 

3. Strong dissipative fluxon in the Josephson junction 

Under strong perturbation (U, A < 1 or << l),  although the perturbation theory mentioned 
above becomes invalid, it  can be instructive to consider the dynamics problem of the 
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Figure 5. Numerical results ofequotion (la). as shown by the Ruxon coordinate X ( r )  versus time 
r for different A: (a) A = 0.09 Md 0.065. the Ruxon is reflecfed and penemes. respectively; 
(b) A = 0.025. fhe Ruxon oscillates. 
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Figure 6. Numerid results of equation ( l a )  a shown by &) Venus timer far parameters 
A = 0.065. n = 0.013 and E = 0.7. Note that the impurity modes =e excited and amplified 
after B finite time. 

Josephson junctions with a s@ong dissipative resistance. Firstly we  show that under strong 
perturbation (or, A e 1 or < 1) the fluxon is not destroyed, i.e. equation (la) has a similar 
kink-type solution described by 

@ ( x ,  r )  @k + @im(x,  r) + g( t )  (25) 

where g(r )  is approximately given by 

0 

Here po is the initial phase. 
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-70 0 70 
X 

Figure 7. Numericd results Q(x.176) of equation ( I n )  for 15 microrcsistors, sfsong 
perturbations, A = 0.8325 and U = 0.23. The results show that under the strong perturbations 
(c, A c I or << 1) the fluxon is not destroyed. 

The numerical results of O ( x ,  to) for a specific time to are shown in figure 7. Now, 
let us demonstrate that the physical process stated in section 2 takes place similarly in the 
presence of strong dissipative resistance. That is, in the AC drive the impurity modes can be 
excited and amplified; when microresistors are properly arranged, through fluxon-impurity 
mode interaction the fluxon gains kinetic energy and then overcomes the potential wells of 
microresistors and the strong resistance to escape from the microresistors finally. In the 
following, we numerically solve equation (la). To eliminate the boundary effects due to 
the AC drive (A c 1 or << I ) ,  we take the AC drive as follows: 

A sin(wr) 1x1 6 50 (27a) 
VAC = A exp[-S(x - 50)1sin(wt) 1x1 > 50 (27b) 

A exp[S(x +SO)] sin(wi) 1x1 < -50. (274 

(28) 

[ 
The following boundary conditions are-used 

aX(-70, t )  = Ox(70, t )  = 0 

The initial conditions are always taken as a fluxon centred at X = -5 and with initial 
velocity V, = 0. Then we have 

~ ( x ,  0) = 4tan-'(x + 5) (29a) 

O,(x, 0) = 0. (29b) 
As in section 2, we use a conservative numerical scheme to integrate equation ( la) .  
Numerical calculations are performed in the spatial interval (-70,70) with discrete step 
size Ax = 2At = 0.04. We take o! = 0.23, E = 0.8 and n = 15. The microresistors are 
arranged as follows: 

I ,  = o  (304  

li+l - li = 0.8. (30b) 
Similarly, for the Dirac S g ,  li) function, we take its value to be equal to I jAx  at X = li, 
and zero elsewhere. 



Josephson junction dynamics 363 

Firstly, we also find that there exists a critical value A,  = 0.81 for the amplitude A of the 
AC drive in  a system in which the microresistors are properly (see equations (30)) arranged; 
when the amplitude A of the A c  drive is greater than A,, the fluxon gains kinetic energy 
from the excited and amplified impurity modes through fluxon-microresistor interaction 
while the microresistors lose their oscillating energy, so that the fluxon is inelastically 
scattered by the microresistors to escape from the microresistors finally, in the same way as 
for the case of the weak perturbations. The numerical results plotted in figure 8 show that 
the impurity modes, can be excited and amplified in the strong dissipative resistance. The 
effects of microresistors on the propagation of a fluxon can be markedly changed because the 
impurity modes are excited and amplified by the AC drive before the fluxon-microresistor 
interaction. Figure 9 depicts that, for a specific arrangement of the microresistors when 
A = 0.8325, the fluxon overcomes the potential wells and the strong dissipative resistance 
and penetrates the microresistors; when A = 0.9, the fluxon is reflected. If the amplitude 
A of the AC drive is less than A,, the fluxon is trapped and oscillates in the vicinity of the 
microresistors. Simultaneously, we show that, for the system of many microresistors, two 
essential conditions need to be satisfied so that fluxon can overcome the attractive potentials 
of microresistors and dissipative resistance. First, the amplitude of the AC drive must be 
large enough that the excited and amplified impurity modes have sufficient oscillating energy 
to give the fluxon. Second, interactions should depend dramatically on the phase 6'0 of the 
impurity oscillation at the collision instant. 

-1.11 I 
0 150 300 

t 
Figure 8. Nvmericd results 0, (I) of equation (lo) for 15 microresistors and a strong dissipative 
resismce 01 = 0.23: (a) A = 0.90; (b) A = 0.8325. Note t b t  in a strong dissipative resismce 
the impurity modes can also be excited and amplified after B finite time. 

The collision phase must be consistent at every collision. Thus the fluxon can gain 
oscillating energy from the microresistors and be accelerated in  the same direction when 
the fluxon is between each pair of microresistors. The requirement of the consistency of 
the collision phase exerts a strict constraint on the motion of the fluxon, the initial phase of 
AC drive and the arrangement of microresistors. It is easy by only increasing the amplitude 
o f  the AC drive for a system consisting of a fluxon and microresistors to satisfy the first 
condition. It is much more difficult for the system to satisfy the collision-phase consistency, 
especially when the number of the microresistors is very large. Our results show only that an 
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Figure 9. Numerical resulrs of equation (lo) for 15 microresistors and the parameters 
A = 0.8325, a = 0.23 and E = 0.8: (a) @(O, I )  versus time f ;  (b) er(.x, I). Note that 
after the fluxon-microresistor interaction the fluxon penetrates the microresistors. 

AC drive for a system consisting of a Auxon and microresistors may be found and can make 
the fluxon overcome the potential of the microresistor and dissipative resistance. However, 
because of the complex phase dependence, for a given system, it can only be verified through 
numerical simulation whether or not there is an Ac drive which make fluxons escape from 
the microresistors. 

4. Concluding remarks 

In conclusion, we have considered the propagation of a fluxon in a randomly located 
inhomogeneous and resistant medium by the aid of perturbation theory and a numerical 
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method. The motion of the fluxon in the randomly located inhomogeneous and resistant 
medium depends on the fluxon-microresistor interaction. Both the semi-analytical and the 
full numerical results show that in an AC drive the fluxon can overcome the attractive 
potentials of the microresistors and dissipative resistance and then escape from the 
microresistors. The threshold values of the AS drive allowing a fluxon to escape from 
the microresistors have been calculated. Finally, we give a brief physical explanation of 
this phenomenon as follows: the microresistors generate a new type of inherent localized 
structures, so-called impurity mode; the impurity mode can, even in the presence of a 
strong dissipative resistance, be excited and amplified by the AC drive; the fluxon gains, 
through the strong fluxon-microresistor interaction, kinetic energy to overcome the attractive 
potentials of the microresistors and the strong dissipative resistance and to escape from the 
microresistors finally. 
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